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a b s t r a c t

Lattice Boltzmann method (LBM) has been used in this study to understand the behavior of bubble
motion and bubble coalescence in liquids. Highly isotropic gradient vectors have been obtained on a lat-
tice for two-phase simulations using LBM. For a fully periodic domain, bubble dynamics and shape for a
single bubble and multiple bubbles are dependent on Eotvos number, Reynolds number and Morton
number. For single bubble simulations, computations were done for high Eotvos and low to moderate
Reynolds numbers, and the results are matched with the experimentally quantified flow visualization
chart. The drag coefficient for single bubble motion under buoyancy for both two- and three-dimensional
simulations compares well with existing correlations. For multiple bubbles, the bubble dynamics is dic-
tated by the vortex pattern of the leading bubble, which allows the bubbles to coalesce. Coalescence can
be described as a three stage process: collision; drainage of the liquid film between adjacent bubbles to a
critical thickness; and rupture of this thin film of liquid. Such simulations have also been run for different
configurations of the initial bubble distribution for both in-line and staggered bubble configuration to
show the effect of vortex shedding on the oscillatory motion of the bubbles and subsequent coalescence.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Boiling and two-phase flow situations are of major importance
in industrial applications. Micro- and mini-channels are very com-
monly used these days in residential air-conditioners and thin
compact evaporators that are being used in automotive and aero-
space industries. The flow topology in such channels needs to be
understood well for development of mechanistic models. Although
the two-fluid technology has progressed significantly, there is little
precedence describing the interfacial forces, heat and mass transfer
in difficult transition flow regimes. In the slug and churn-turbulent
regimes, where all types of interfaces exist, it is difficult to develop
continuum transport equations and closure models for each phase,
in particular the vapor phase which exists in different forms and
shapes. For example, a bubble can be spherical, distorted, confined
and/or elongated. The behavior of bubbles and slugs in an infinite
medium depends on several parameters such as Reynolds number
(Re), Eotvos number (Eo) and Morton number (Mo). There are
empirical correlations that exist for terminal velocity and drag
coefficient in terms of these non-dimensional parameters [1–3].
Earlier computational work in this field of bubble dynamics has
been directed towards flow separation at a smooth free surface
of a bubble in a quiescent liquid at moderate Reynolds numbers
using body-fitted coordinates in which the density and viscosity
of the vapor were neglected in comparison to that of the liquid
ll rights reserved.
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[4]. More recently, Esmaeeli and Tryggvason [5,6] conducted
two- and three-dimensional simulations of buoyant bubbles in
periodic domains for a range of low to moderate Reynolds numbers
using their hybrid method. They found that a regular array of
(slightly perturbed) bubbles is an unstable configuration that even-
tually leads to an asymmetrical arrangement. Sankaranarayanan
et al. [7] have conducted single bubble simulations using an impli-
cit formulation of LBM. Their simulations were conducted for
1 < Eo < 10 and Re > 100. However, a detailed computational study
into the dynamics of bubble collision and coalescence in a high
pressure and low liquid-to-vapor density ratio system has not been
undertaken where the Reynolds number is low and the Eo can be of
O(100). In LBM, the interfaces in different shapes occur naturally
without having to be tracked as in averaged Navier–Stokes equa-
tions. This type of representation would encompass the various
bubble regimes. Thus, it is important to focus on the fundamental
understanding of the flow topology around single bubbles and the
coalesced bubbles and rely less on empirical correlations or closure
relations for the averaged Navier–Stokes equation. In this paper,
the microscopic physics of bubble motion and shape evolution
for very dilute single- and multiple bubble suspensions are studied
for the range of 1 < Re < 100 by conducting two- and three-dimen-
sional simulations in a fully periodic domain. The effect of period-
icity on bubble dynamics has been minimized by considering a
long computational domain in the direction of rise of the bubble.

The objectives of this work are to (a) develop a method to deter-
mine the bubble interfaces using density gradients using Boltz-
mann’s equation; (b) track the bubble movement for in-line and
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Nomenclature

a acceleration, m/s2

a index for velocity–space discretization
c lattice unit length, m
cs speed of sound, m/s
CD drag coefficient
d diameter of the bubble, m
D diameter of the spherical cap, m
ei lattice speed of particles moving in direction i, m/s
Eo Eotvos number
f particle distribution function
g acceleration due to gravity, m/s2

gij interaction strength between components i and j
G Green’s function
m molecular mass
Mo Morton number
N number of links at each lattice point
p pressure, N/m2

p momentum, kg-m/s
r radius of the bubble, m
Re Reynolds number
s curvature of the stagnation point
S number of phases
t time, s
u velocity vector, m/s
U velocity in the rise direction, m/s
V interaction potential
We Weber number

Greek symbols
dab Kronecker delta
m kinematic viscosity, m2/s
q density, kg/m3

r surface tension, N/m
s relaxation time
U volume fraction
W effective mass function
X collision operator

Subscripts
e effective
i index
b bubble
L liquid
sph sphere
r phase index

Superscripts
* non-dimensional quantities
eq equilibrium
r phase index
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staggered bubbles, determine the flow topology and bubble coales-
cence, and (c) to determine the terminal rise velocity and drag
coefficient of single bubbles for various Re, Eo and Mo and compare
with available experiments and correlations.

2. Methodology

In recent years, researchers have begun to use an alternative
computational technique, called the lattice Boltzmann method
(LBM), to simulate fluid flow as opposed to conventional methods
based on solution of Navier–Stokes equations. The lattice Boltz-
mann method of simulating fluids has been proven to be an efficient
algorithm, as it can handle flows in complex geometries, porous
media, and in multiphase systems with relative ease. Frisch, Hassl-
acher and Pomeau [8] developed a simple cellular automaton that
obeyed conservation laws at the microscopic level and was able
to reproduce real fluid flows. This method was known as the lattice
gas cellular automaton (LGCA) and was soon found to suffer from
the lack of Galilean invariance, anomalous velocity dependence of
the fluid pressure, statistical noise, high viscosity, exponential com-
plexity and spurious invariants [9]. Later work by McNamara and
Zanetti [10] helped circumvent two obstacles of LGCA, namely sta-
tistical noise and exponential complexity of the collision rule. This
version of lattice Boltzmann evolved under the Bhatnagar–Gross–
Krook (BGK) collision operator, and is the ultimate version of LBM
in terms of simplicity, elegance and efficiency.

The Boltzmann’s kinetic equation is a well established mathe-
matical model of a fluid at the microscopic level which describes
the evolution of the single particle distribution function. Unlike
conventional schemes that are based on discretization of contin-
uum based macroscopic equations, the lattice Boltzmann method
models the microscopic and mesoscopic kinetic equations. The
fundamental idea of LBM is to construct simplified kinetic models
that incorporate the essential physics of microscopic or mesoscopic
processes so that the macroscopic averaged properties obey the
desired macroscopic equations.

In multiphase flows, the standard technique is to use either the
fluid-mixture or the two-fluid model. Each fluid is modeled by a
modified Navier–Stokes (NS) equation, with extra source terms
accounting for interfacial effects and forces. But the interface is dy-
namic, which is difficult to handle numerically with conventional
methods. A mesoscopic method like LBM requires no empirical
equations or correlations for closure of the extra source terms in
the governing equations, and at the same time can yield detailed
information about the physics of the flow around single or multiple
bubbles. Moreover, in LBM, the interface is no longer a mathemat-
ical boundary; rather it is a post-processed quantity that can be de-
tected by monitoring the variation in fluid densities.

2.1. LBM formulation

The evolution equation for the particle distribution function is
very similar to the kinetic equation in lattice gas automata, given
by

fiðxþ eidt; t þ dtÞ ¼ fiðx; tÞ þ Xiðfiðx; tÞÞ; i ¼ 0;1; . . . ;N

and Xiðfiðx; tÞÞ ¼ �
fiðx; tÞ � f eq

i ðx; tÞ
s

ð1Þ

We have used the particular form of the collision operator with the
single time relaxation approximation, also known as the lattice BGK
(Bhatnagar–Gross–Krook) operator. This form of the collision oper-
ator leads to a differential equation of the form

ofi

ot
þ ei � rfi ¼ �

ðfi � f eq
i Þ

s
ð2Þ

for the Boltzmann’s kinetic equation. The macroscopic density per
node and the macroscopic momentum flux are defined in terms
of the particle distribution functions by



Fig. 1. Results for the 2-D lid-driven cavity simulation obtained using LBM showing
(a) streamlines at a Reynolds number of 250, and (b) center-line velocity for two
different Re values of 100 and 250.
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q ¼
X

i

fi ¼
X

i

f eq
i ; qu ¼

X
i

fiei ¼
X

i

f eq
i ei ð3Þ

The equilibrium distribution functions depend only on local density
and velocity and they can be expressed in the following form:

f eq
i ¼

q� d0

b
þ qD

c2b
ðei � uÞ þ q

DðDþ 2Þ
2c4b

ðeiei : uuÞ � qD
2c2b

ðu � uÞ;

f eq
0 ¼ d0 �

q
c2 ðu � uÞ

ð4Þ

where f eq
i is the equilibrium distribution of particles moving in

direction ‘i’, f eq
0 is the equilibrium distribution of rest particles, D

is the dimension rank, b is the number of lattice directions, c is
the lattice unit length, and d0 is the average rest particle number
[11]. Chen and Doolen [12] have shown Eq. (2) can be reduced to
the Navier–Stokes equations in the low frequency, long wavelength
limit using the Chapman–Enskog expansion together with Eq. (4).
The resulting momentum equation is

oq
ot
þr � qu ¼ 0 ð5aÞ

q
ou
ot
þ u � ru

� �
¼ �rpþ tr2ðquÞ þ trr � ðquÞ ð5bÞ

where p ¼ c2
s q and t ¼ c2

s ðs� 1=2Þ. Thus the lattice Boltzmann’s
equation is able to bridge the gap between the microscopic fluid
interactions and the macroscopic world as it yields Navier–Stokes
equation in the low Mach number limit using the Chapman–Enskog
expansion, and is second order accurate in space. In addition, s > 1/2
in order for viscosity to be positive.

2.1.1. Multiphase models in LBM
Numerous methods have been used by researchers over the

past decade to conduct multiphase simulations using LBM. These
include the model proposed by Rothman and Keller or better
known as the R–K model [13], where the two-fluids are denoted
by different colors. In this model, phase separation is induced by
the repulsive interaction based on the color gradient. The R–K
model was originally meant for lattice gas simulations. Grunau
et al. [14] introduced some free parameters in this model.

The lattice Boltzmann implementation was first introduced by
Shan and Chen [15]. In Shan–Chen’s (S–C) model, the multiple
phases were simulated by introducing non-local interactions be-
tween particles at each lattice site, thereby introducing spurious
currents at the interface. Hou et al. [16] in one of the earliest works
on multiphase LBM studied the Rothman–Keller (RK) and the Shan–
Chen (SC) models. Their simulations were done for a static bubble
with the ideal equation of state and in a static medium. They
showed that the SC model is a major improvement over the RK
model. This static bubble test has since then been used as a bench-
mark for conducting multiphase simulations using LBM. Yang et al.
[17] used the SC model for their LB simulations and have qualita-
tively proved that results from LBM are very similar to experimen-
tal observations for saturated pool boiling. Sankaranarayanan et al.
[7] proposed closures for drag and virtual mass terms that appear in
two-fluid models through simulations performed using an implicit
LBM using the SC model to simulate the liquid–vapor interaction.
Later, Lee and Fischer [18] devised a new approach by which the
spurious currents at the interface could be greatly minimized.

Swift et al. [19] proposed the ‘‘free-energy” approach. In this
model, unlike the S–C model, the local momentum conservation
was satisfied. Recent applications of this model have been focused
towards development of methods that could simulate high density
ratios for the liquid–vapor mixture. Inamuro et al. [20] used the
projection method together with Swift’s free-energy model to deal
with immiscible fluids with large density ratios. In their work, they
demonstrated the applicability of the algorithm developed for the
case of droplet collisions surrounded by a lighter fluid. In another
work, Inamuro et al. [21] conducted simulations for bubbly flows
with large density ratios using the projection method. In addition,
recent work has also been concentrated on the lattice Boltzmann
simulations of multiphase flows with high density ratios [22,23]
to study liquid–gas systems.

Takada et al. [24], in their work on bubble motion under gravity,
developed a 3-D version of the binary fluid model that introduces a
free energy function into the LBE. Their results proved that LBM is
suitable for numerical analysis of bubble motion under gravity.
Their simulations were conducted using a two-dimensional hexag-
onal lattice arrangement. They have also shown bubble migration
towards the center of the channel for wall-driven shear flows. In
more extended simulations, they demonstrated binary bubble coa-
lescence and the stages involved in the process. However, Swift’s
model suffers from the lack of Galilean invariance.

More recently, Kurtoglo and Lin [25] used the phase-field meth-
od to assess its applicability to single bubble dynamics. But not
much attention was given to the study of bubble coalescence



Fig. 2. Bubble shape evolution under gravity at an Eotvos number of 10.7. The time instants are at (a) initial condition, and (b) t* = 10.6 (c) velocity vectors around the bubble
as it forms an ellipsoidal shape at steady state.
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behavior, and in particular transition behavior from bubbly to slug
flow regime. Through this work, we aim to establish the mecha-
nism for bubble coalescence in the presence of gravity using iso-
thermal LBM. In this work, the S–C model has been used
extensively to study isothermal flow behavior of immiscible com-
ponents and multiple phases. The S–C model is described below.

2.1.2. S–C model for multiple phases and components
Shan and Chen [15] in their work proposed a lattice Boltzmann

based model that could simulate multiple phases and components.
They incorporated non-local interactions amongst particles to sim-
ulate multiple component fluids. The interaction potential be-
tween components r and �r was defined as
Fig. 3. Bubble deformation as computed using LBM for different sizes of the initial bubbl
Eo = 37.2, (b) Eo = 74.5 and (c) Eo = 297.2.
Vðx;x0Þ ¼ Gr�rðx;x0ÞwrðxÞw�rðx0Þ ð6Þ

where Gr�rðx;x0Þ is the Green’s function. The quantity wr is the
‘‘effective mass”. If only nearest neighbor interactions were consid-
ered, then

Gr�rðx;x0Þ ¼
0; jx� x0j > c
Gr�r; jx� x0j ¼ c

�
ð7Þ

The magnitude of Gr�r controls the strength of the interaction be-
tween components r and �r, while its sign determines whether the
interaction is attractive or repulsive.

This form of the potential gives the rate of net momentum
change at each lattice site to be
e. Density ratio is 2.66 for all the simulations. The Eotvos number for each case is (a)



Table 1
Parameters for single bubble simulations using LBM*

de Eo Mo Re Shape

(a) 52 5.03 3.2 � 10�4 17.22 Oblate ellipsoid
(b) 56 6.37 4.15 � 10�4 18.82 Oblate ellipsoid
(c) 60 7.76 4.94 � 10�4 21.1 Oblate ellipsoid
(d) 40 1.56 7.36 � 10�4 3.74 Spherical
(e) 34 0.26 9.27 � 10�4 0.27 Spherical
(f) 40 3.13 1.47 � 10�3 6.72 Oblate ellipsoid
(g) 48 7.59 1.75 � 10�3 15.09 Oblate ellipsoid
(h) 30 8.76 1.86 � 10�3 18.0 Oblate ellipsoid
(i) 44 7.03 2.35 � 10�3 13.29 Oblate ellipsoid
(j) 40 6.94 4.0 � 10�3 11.26 Oblate ellipsoid
(k) 48 18.97 4.38 � 10�3 27.04 Oblate ellipsoid cap
(l) 52 23.74 5.3 � 10�3 31.2 Oblate ellipsoid cap
(m) 44 17.57 5.86 � 10�3 23.65 Oblate ellipsoid
(n) 30 .64 7.06 � 10�3 0.39 Spherical
(o) 40 15.65 7.36 � 10�3 20.86 Oblate ellipsoid
(p) 56 32.18 8.46 � 10�3 37.3 Oblate ellipsoid cap
(q) 36 7.25 8.57 � 10�3 8.64 Oblate ellipsoid
(r) 40 17.35 1.00 � 10�2 20.58 Oblate ellipsoid
(s) 24 9.02 1.19 � 10�2 10.3 Oblate ellipsoid
(t) 40 26.03 1.50 � 10�2 26.64 Oblate ellipsoid
(u) 30 6.14 1.56 � 10�2 5.58 Oblate ellipsoid
(v) 30 1.6 1.77 � 10�2 0.96 Spherical
(w) 34 5.27 1.85 � 10�2 4.65 Oblate ellipsoid
(x) 36 18.13 2.14 � 10�2 17.39 Oblate ellipsoid cap
(y) 30 3.21 3.53 � 10�2 1.85 Spherical

* For all cases, qL/qg = 2.66.

Fig. 4. Shape regime map for isolated bubbles in liquids taken from [1]. The pictures in
oblate ellipsoidal; oed, oblate ellipsoidal disk-like and wobbling; oec, oblate ellipsoid ca
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dpr

dt
ðxÞ ¼ �wrðxÞ

XS

�r¼1

Gr�r

Xb

a¼0

w�rðxþ eaÞea ð8Þ

Therefore, this change in momentum is applied at each lattice site
in the equilibrium distribution function before the collision, as
shown by Buick and Greated [26]:

qrur ¼ qruþ sr dpr

dt
ðxÞ ð9aÞ

where

qr ¼ mrf rðxÞ ð9bÞ

is the mass density of the rth component and

u ¼
PS

rmr
P

af r
a ea=srPS

rmr
P

af r
a =s

r
ð9cÞ

and

f rðxÞ ¼
X

a

f r
a ð9dÞ
3. Results and discussion

Simulations were done for single-component single-phase
flows to assess the validity of the lattice Boltzmann method. A
2-D lid-driven cavity flow for two Reynolds numbers of 100 and
the inset show the results of the numerical simulations using LBM; s, spherical; oe,
p; scc, spherical cap with closed wake,; sks, skirted with smooth steady wake.
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250 was carried out. The extrapolation scheme proposed by Chen
and Martinez [27] has been used for the particle distribution func-
tions at the walls. The streamlines for Re = 250 is shown in Fig. 1a. A
comparison of the horizontal velocity in the cavity along the verti-
cal centerline is shown in Fig. 1b for Re = 100 and Re = 250. The flow
velocity and streamlines are in good agreement with results pub-
lished in [27].

Multiphase simulations using LBM were performed next. The
most important parameters in the study of bubble motion are Eot-
vos number, Eo ¼ gDqd2

e=r, Morton number, Mo ¼ gq2
LDqt4=r3, Rey-

nolds number, Re = Ubde/t and Weber number, We ¼ qLU2
bde=r.

Grace [1] has shown the relationship of Eotvos number with Rey-
nolds number for a wide range of Morton numbers. Weber number
is a ratio of the dynamic pressure ð� qLU2

bÞ to the surface tension
pressure (�r/de). For We� 1, bubbles maintain a spherical shape
throughout the flow domain. These parameters have been used in
this study to record and observe bubble shapes and flow regimes.
1.0

10.0

100.0

1000.0

0.1 1.0 10.0 100.0
Re

C
d

Joseph (2003) Bhaga (1981) LBM 2D LBM 3D

Fig. 5. The drag coefficient as computed for single bubbles from two- and three-
dimensional lattice Boltzmann simulations at different Reynolds numbers com-
pared with the correlation in Bhaga and Weber [2] and the theoretical solution of
Joseph [32]. Pictures in the inset show bubble deformation at different Reynolds
numbers.
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Fig. 6. Plot of the log(de/dsph) versus log(We). A large value of the diameter ratio
implies a higher deviation of the bubble from pure spherical shape.
Multiphase simulations in LBM were initially conducted with
static bubble tests to generate a good initial condition with one
bubble in a fully periodic domain for both 2-D and 3-D simulations.
The nearest neighbor SC model as explained by Yuan and Schaefer
[28] has been used in which the next-nearest neighbor is also used
in the force discretization. Accordingly, Eq. (7) is modified to ac-
count for the nearest and second nearest neighbors as

Gr�rðx;x0Þ ¼
g; jx� x0j ¼ 1
g=4; jx� x0j ¼

ffiffiffi
2
p

0; otherwise

8><
>: ð10Þ

This leads to a non-ideal equation of state that is given by

p ¼ c2
Sqþ

3
2

gW2 ðqÞ ð11aÞ

in 2-D for the D2Q9 lattice and

p ¼ c2
Sqþ 3gW2ðqÞ ð11bÞ

in 3-D for the D3Q19 lattice arrangement. cS ¼ 1=
ffiffiffi
3
p

is the speed of
sound in lattice units. It should be noted here that if there is no
interaction amongst the same kind of fluid, then the equation of
state would reduce to the ideal gas equation of state given by
p ¼ c2

Sq. The ‘effective mass’ function, W, used for the liquid is the
same as proposed by [15], given by

WðqÞ ¼ q0½1� expð�q=q0Þ� ð12Þ

This leads to a value of the critical interaction strength to be
gcrit ¼ � 4

9q0
(2-D) and gcrit ¼ � 2

9q0
(3-D). Any value of the interaction

strength below gcrit would result in phase separation of the liquid
phase. In most simulation results described below, q0 = 1 unless
otherwise specified. For the vapor phase, w is set equal to q. The
lighter fluid obeys an ideal equation of state, because g11 = 0.

Two-phase simulations are started by conducting a static bub-
ble test, in which a single bubble is equilibrated in a fully periodic
domain initially. An interface of thickness close to three lattice
units is formed at the surface of the bubble because of the sudden
transition in the density of the fluid-mixture. This value of the
interface thickness is the same as reported by Hou et al. [16].

The static bubble test yields a good initial guess for the density
and pressure distribution in the domain for the multiphase simula-
tion, even before gravity is introduced. After letting the bubble(s)
equilibrate for a long time in the domain, a steady state is achieved,
and gravity is switched on. The gravitational force is in the nega-
tive vertical direction. Sankaranarayanan et al. [7] have suggested
0.00
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0.25

0 0.5 1 1.5 2 2.5 3
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U
*

Eo=1.6 Eo=0.64 U*(theory)=0.18 U*(theory)=0.12

Fig. 7. Non-dimensional rise velocity as a function of time compared with the p-
otential flow solution of Joseph [32] for bubbles with very low Weber number (i.e.
We� 1). The symbols show current LBM results, and the dotted lines show the
theoretical predicted value.
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that this external force can be introduced into the force equation
using the expression

aext ¼ g 1� hqi
q

� �
ð13Þ

where q is the mixture number density at the node of interest and
hqi is the average number density of the mixture in the entire do-
main. This choice ensures that the average value of the external
force is zero in the periodic domain, and hence the mass-average
velocity of the mixture is constant.

To capture bubble motion for a long enough time and to achieve
steady state, a two-dimensional domain of with 100 � 300 lattice
units and periodic boundary conditions was selected and a new
static bubble was created and released from rest to rise under
buoyancy. The number of lattice nodes in either direction was se-
lected such that the effect of the trailing wake on the bubble mo-
tion was negligible. Fig. 2a and b shows bubble snapshots at
Fig. 8. Bubble coalescence for a flow situation with two bubbles of equal size of diameter
at (a) t* = 21.9; (b) bubbles coalesce at t* = 22.62 to form a bell-shaped blob; (c) bubble

Fig. 9. Bubble coalescence for a flow situation with two bubbles of equal size of diameter
at (a) t* = 11.0; (b) bubbles coalesce at t* = 11.84 to form a bell-shaped blob; (c) bubble
different instants of time as the bubble shape evolves under the
influence of gravity. Time has been non-dimensionalized as
t� ¼ t=

ffiffiffiffiffiffiffiffiffiffi
de=g

p
. The simulation was done at Eo = 10.7 and

Mo = 2.38 � 10�3. At this Eotvos number, the bubble shape changes
from spherical to an ellipsoid. Liquid-to-vapor density ratio is
2.66 and weighting factors as suggested by Shan [29] for sixth or-
der isotropic tensor are used for the fluid–fluid interaction to min-
imize the magnitude of the spurious currents. Using this form of
the force discretization leads to an equation of state for the liquid
to be of the form

p ¼ c2
s qþ

15
8

gW2ðqÞ ð14Þ

The interaction strengths were taken to be g11 = 0, g22 = �0.3,
g12 = 0.15. The velocity vectors around the bubble are shown in
Fig. 2c. The presence of closed wakes behind the bubble is clear.
The bubble forms an oblate ellipsoidal cap as has been discussed
40 lattice units separated by center to center distance of 2.5d initially. Bubbles touch
attains a spherical cap shape at t* = 27.6.

30 lattice units separated by center to center distance of 2d initially. Bubbles touch
attains an oblate ellipsoidal shape at t* = 20.4.
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by Bhaga and Weber [2], who did experiments to study the wake
behavior behind moving bubbles with hydrogen bubble tracer tech-
nique. Fig. 3 shows a comparison of the 2-D single bubble flow
behavior and the bubble shape deformation/change as a function
of Eotvos and Morton numbers. The number of lattice nodes used
is 100 � 300. It is clear that as the Eotvos number increases, the bub-
ble deformation and wake characteristics change very dramatically.
The parameters for the single bubble simulations are listed in
Table 1. It can be seen that as the Eotvos number increases, the bub-
ble shape changes from an ellipsoid (Fig. 3a) to a disk (Fig. 3b) and
then for even higher Eotvos numbers, the bubble takes a skirt-like
shape (Fig. 3c). These shapes correspond very well with the param-
eters provided in the chart created by Bhaga and Weber [2] and the
numerical results of Tomiyama [30]. Fig. 4 shows the well-known
bubble shape regime map constructed by [1] using flow visualiza-
tion. For various Re and Eo, the bubbles were characterized as spher-
Fig. 10. Dynamics of three bubbles separated by a continuous liquid phase at Eo = 2.88
lattice nodes. Bubbles are aligned vertically; (a) t* = 2.85, (b) t* = 6.12, (c) t* = 6.94, (d) t*
ical (s), oblate ellipsoid (oe), oblate ellipsoidal disk-like (oed), oblate
ellipsoid cap (oec); spherical cap with closed wake (scc), and skirted
(sks). Several cases were run using the current LBM for various Re, Eo
and Mo as given in Table 1 and have been characterized as spherical,
oblate ellipsoid and oblate ellipsoid cap bubbles. Six representative
cases are plotted along with Grace’s [1] regime map in Fig. 4. This fig-
ure shows that the current numerical simulation using LBM yields
excellent quantitative and qualitative results for single bubble sim-
ulations. The shapes predicted in the current study are also found to
match well with the bubble regime map given by [25].

3.1. Drag force and drag coefficient calculations

Most of the available correlations for drag have been developed
for a single bubble in an infinite medium. However, the ideas can
be extended to small tubes and channels for very small bubbles.
and Mo = 2.71 � 10�4. The domain is two-dimensional and divided into 150 � 400
= 7.35, (e) t* = 10.2, (f) t* = 11.02, (g) t* = 13.88, and (h) t* = 14.29.
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For larger bubbles that are confined by the walls, the correlations
may not be valid since the bubbles elongate with a spherical cap
and a cylindrical tail [3]. In order to calculate the drag coefficient
for a bubble in the dispersed field, the spherical equivalent size
of the capped bubble is one that is widely considered. Even within
the dispersed field, the bubbles go through distinct regimes and
have different rise velocities. The rise velocity given as a function
of the equivalent bubble diameter is an important component in
the development of bubble drag models.

The bubble diameter at which the bubble ceases to be spherical
is proportional to dsph = (r/Dqg)0.5. This quantity simply comes
from the force balance between the buoyancy and surface tension
acting on the bubble. This can also be recast in terms of the param-
eter, Eotvos number, Eo, defined as Eo ¼ gDqd2

e=r. Tomiyama [30]
Fig. 11. Dynamics of three bubbles separated by a continuous liquid phase at Eo = 3.04 a
vector; (a) t* = 1.84, (b) t* = 4.9, and (c) t* = 7.96.

Fig. 12. Dynamics of three bubbles separated by a continuous liquid phase at Eo = 3.04 a
vector; (a) t* = 8.57, (b) t* = 9.19, and (c) t* = 10.41.
classified bubbles in several groups based on their Eo. For each field
or group, he used a drag coefficient based on Eotvos and Morton
number. Based on the proposed drag coefficient, he calculated
the terminal rising velocities of single bubbles in stagnant liquids,
and plotted Re vs. Eo for various Morton number to compare with
available data. He classified the bubble shapes for Mo < 10�6 into
spherical and ellipsoidal (oblate spheroid, Eo < 40) and spherical
cap (Eo > 40) with a flat rear surface. This is an effective approach
in thin tubes if the flow regime is predominantly bubbly and slug
flow. Zun [31] describes the intrinsic fluctuating bubble motion
in terms of Eo, and reports that the magnitude of the fluctuation
increases with Eotvos number. Using an interface tracking method,
Tomiyama [30] predicted single bubble motion to determine the
effect of Eotvos number. Their predicted velocity field indicates
nd Mo = 3.16 � 10�4. Bubbles are in staggered alignment with respect to the gravity

nd Mo = 3.16 � 10�4. Bubbles are in staggered alignment with respect to the gravity



Fig. 13. Dynamics of three bubbles separated by a continuous liquid phase at
Eo = 3.04 and Mo = 3.16 � 10�4. Bubbles are in staggered alignment with respect to
the gravity vector. (a) t* = 11.64, and (b) t* = 15.92.
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that the bubble fluctuation is closely related to the periodic vortex
shedding, and Eo is the most appropriate parameter to define the
lateral movement of the bubbles.

In our study, drag coefficient calculations were conducted using
buoyancy-driven single bubble simulations at various void frac-
tions for the same bubble diameter. The isolated bubble was sim-
ulated at low void fractions and the velocity of such a bubble was
computed till it reached a steady value. Such calculations were
done for various sizes of the 2-D and 3-D domain keeping the bub-
ble diameter the same, and the Reynolds number for each void
fraction was recorded. Subsequently, a log–log plot of Re vs.
1 � U, where U is the volume fraction of vapor in the domain
was generated. Extrapolation of this curve in the limit of U ? 0
gives the terminal Reynolds number for a given bubble size, from
which terminal velocity can be determined.

The drag coefficient is obtained from a force balance and is given

by CD ¼ 4
3

Dq
qL

gde

U2
b

in 3-D and CD ¼ p
2

Dq
qL

gde

U2
b

in 2-D. The calculations for

the drag coefficient have been compared to the correlation of Bhaga
and Weber [2], in which the drag coefficient for fluids with high
Morton numbers (Mo > 4 � 10�3) is said to obey the relationship

CD ¼ ð2:67Þ0:9 þ 16
Re

� �0:9
" #1=0:9

ð15Þ

Results of the numerical computations have also been compared to
the theoretically derived drag coefficient of Joseph [32], in which CD

is given by

CD ¼ 0:445 6þ 32
Re

� �
ð16Þ

These results are shown in Fig. 5. It is a well-known phenomena
that spherical bubbles undergo a so-called hindered rise, as has
been shown by [33], whereas the deformed bubbles (high Eo) are af-
fected by the wake of preceding bubble, leading to a cooperative
rise. It has also been pointed out in [33] that the Richardson–Zaki
exponent for the case of essentially spherical bubbles in 3.6, indicat-
ing higher drag for such cases. The current results show the same
trend where the drag coefficient is slightly over-predicted for low
Re, but under-predicted at moderate Re. It is also observed that
the primary difference between 2-D and 3-D bubble dynamics is
in terms of the computed drag force. It is found that at low Reynolds
numbers (Re 6 1), the drag force for the 2-D bubble is less than
what is calculated through 3-D dynamics (because of the hindered
rise). As the Reynolds number is increased, the 3-D bubble dynam-
ics formulation predicts a drag force that matches well with the the-
oretical and experimental correlations, as compared to the 2-D
formulation. With the current explicit formulation of LBM, bubble
Reynolds numbers are limited to O(100). This was mainly done to
capture a wide range of Morton numbers.

Next, Weber number vs. effective bubble diameter is plotted in
Fig. 6. The effective bubble diameter is non-dimensionalized using
dsph = (r/Dqg)0.5, which effectively yields Eo1/2. This was done to
study the bubble shape behavior as a function of the bubble diam-
eter. When We� 1, the surface tension pressure dominates over
the dynamic pressure, and hence the bubble shape remains purely
spherical. Fig. 6 shows that for small effective bubble diameters, or
small Eo, the Weber number is also small, and the shape is observed
to be pure spherical. Bubble diameter increased with Weber num-
ber, resulting in a higher distortion in the bubble shape (see inset
Fig. 5). This also indicates that the surface tension pressure can no
longer hold the bubble as a sphere and hence the dynamic pressure
of the bubble dominates, creating a highly distorted bubble. For the
cases where the Weber number was small as compared to unity,
terminal velocity calculations have been compared to the theoreti-
cally derived equation given by Joseph [32], which is derived from
the theory of potential flow for a spherical cap bubble. According to
his work, such bubbles obey a dependence of the velocity on the
fluid viscosity and the diameter of the spherical cap, and also the
curvature at the stagnation point of the bubble. The terminal veloc-
ity is given by

Uffiffiffiffiffiffi
gD

p ¼ �8tð1þ 8sÞ

3
ffiffiffiffiffiffiffiffi
gD3

q þ
ffiffiffi
2
p

3
1� 2s� 16sr

qgD2 þ
32t2

gD3 ð1þ 8sÞ2
" #1=2

ð17Þ

where ‘s’ is the curvature at the stagnation point of the bubble, and
is equal to zero for a perfectly spherical bubble. In the small Weber
number limit, i.e. for We� 1, the expression can be simplified and
written as

U� ¼ Uffiffiffiffiffiffi
gD

p ¼ �8t

3
ffiffiffiffiffiffiffiffi
gD3

q þ
ffiffiffi
2
p

3
1þ 32t2

gD3

" #1=2

ð18Þ

Joseph [32] has called the non-dimensional form of the velocity as
the Froude number. The non-dimensional velocity calculated
through the code as the bubble attains a steady terminal velocity
is shown in Fig. 7 for two cases of Eo = 0.64 and Eo = 1.6. The devel-
opment of the rise velocities has been plotted as a function of the
non-dimensional time, given as t� ¼ t=

ffiffiffiffiffiffiffiffiffiffi
de=g

p
. The results show a

perfect match of the computed velocity profile in the Stokes flow
limit when compared to the derived non-dimensional velocity of
[32].

3.2. Multi-bubble simulations

Simulations were also done for multiple vapor bubbles in a peri-
odic domain. In a thin vertical rectangular channel, Jones and Zuber
[34] observed that the slug regime seldom contains Taylor-type
bubbles. Instead, the bubbles in the slug flow oscillated wildly
from side to side and snakewise along the upward flow direction.
They observed the Karman vortex street behavior by the entrained
bubbles behind major voids using the high-speed motion pictures.
Under the influence of the trailing vortex street, the nose of the
elongated bubbles moved from side to side. Later from geometric
considerations, Mishima and Hibiki [35] showed that the possibil-
ity of collisions and coalescence would increase if the maximum



Fig. 14. Comparison of the streamlines around the bubble for the case of Figs. 10a and 11–13b. The flow field around (a) is symmetrical about the center axis unlike (b). This
causes the bubble in (b) to oscillate as it moves upwards.
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distance between two bubbles is less than the projected diameter
of flat bubble. Esmaeeli and Tryggvason [5,6] show that a regular
array of bubbles is an unstable arrangement when the bubbles
are released from a slightly perturbed initial configuration and
let free to evolve with time. Our emphasis has been to capture
the three-stages of bubble coalescence, namely (a) collision, (b)
squeezing out of the liquid until the film has reached a critical
thickness, and (c) rupture of this thin film to form a coalesced bub-
ble. Therefore, we have done simulations for an inline arrangement
of bubbles without any initial random perturbation in the lateral
positions. Figs. 8 and 9 show two such cases in which the current
methodology has been used to study bubble coalescence in a 2-D
fully periodic domain of size. 100 � 300. Fig. 8 shows the flow sit-
uation for two bubbles at Eo = 53.7 and Mo = 0.297 separated by an
initial separation distance of 2.5d and Fig. 9 is at Eo = 29.6 and
Mo = 0.279 with an initial separation of 2.0d, where ‘d’ is the initial
diameter of the bubble. The preliminary cases were run with two
bubbles, whose line connecting the centers is parallel to the grav-
itational vector. One of the objectives was to study the influence of
the wakes left by the upper bubble(s), which subsequently move
downstream into the path of the lower bubble(s). It can be ob-
served that for bubbles with an Eotvos number of 53.7, the upper
bubble deforms much more than the lower rising bubble. This
can be explained by the fact that the upper bubble flows ‘through’
the quiescent liquid, while the lower one is traveling ‘into’ the
wake left behind the upper bubble. Thus, the wake left behind by
the upper bubble results in lower drag for the lower bubble. Since
the relative velocity of the bubbles is non-zero, the distance be-
tween the two bubbles keeps decreasing with time. Eventually
the bubbles touch/collide (see Figs. 8a and 9a), and soon after form
a larger bubble with twice the volume as the initial bubble. The
shape of this intermediate larger bubble (see Figs. 8b and 9b), at
the time when the thin liquid film separating the two bubbles
has just ruptured, is different for the two cases shown here, there-
by indicating that bubble coalescence and behavior is a function of
the Eotvos number and is not the same for all situations. In this
case, Eotvos number was changed by changing the size of the ini-
tial bubble(s). Eventually at steady state, the bubble streamlines
and the shapes for the two cases are found to be much different
as was expected (see Figs. 8c and 9c). Simulations were also done
for cases with more than two bubbles, aligned vertically and also in
a staggered manner. For in-line bubbles, the motion of the bubbles
is purely rectilinear. This can be explained as the initial bubble dis-
tribution has an axis of symmetry that runs through the center of
the bubbles, as can be seen in Fig. 10. So the bubbles do not expe-
rience lateral force and hence do not deviate in the lateral direc-
tion. The coalescence process of these bubbles is captured in
Fig. 10c–g. It can be observed that the uppermost bubble flowing
upstream into the path of the falling liquid has the maximum
shape deformation, because of the highest drag experienced by this
vapor phase. Fig. 10g shows an instance when some liquid is
trapped inside the bubble after the bubble collision. This is due
to high inertia at the time of impact, so the liquid is unable to
squeeze out completely in time through the narrow gap left be-
tween the two bubbles, thus getting trapped inside the vapor
phase. Eventually, as can be seen in Fig. 10h, the liquid ‘pops’ out
from the bottom surface of the vapor. This phenomenon has also
been observed by Takada et al. [24].

To study how the wakes behind the bubbles affect the motion of
the downstream bubbles, a new simulation was run with three bub-
bles of the same size that are staggered by a lateral distance of the
order of the initial diameter of the bubbles with respect to the grav-
itational vector. The simulation domain was chosen fairly long in
the direction of rise of the bubbles (150 by 400; d = 30) so that the
periodicity of the wake had minimal influence on the top-most bub-
ble. The results of this test are shown in Figs. 11–13. The time for
each snapshot is also mentioned, which has been non-dimensional-
ized using �t ¼

ffiffiffiffiffiffiffiffiffiffi
de=g

p
. It was observed that as the bubbles move, the

wake behind the upper bubbles creates an artificial lift force for the
downstream bubbles, thereby causing the bubbles to move in a heli-
cal path. The effect of the lift force is such that the bubble shapes are
no more oblate elliptical, rather change to oval-like. These oval bub-
bles seem to follow each other, into the wake left by the upstream
vapor. Eventually these bubbles coalesce and the shape of the coa-
lesced bubble is shown in Fig. 13a and b. The vortices for the two
cases of rectilinear and helical bubble motion are also compared
in Fig. 14. The shape of the vortex at either end of the major axis
of the bubble is much different in both cases, and explains the heli-
cal path of the bubbles in the oscillatory motion of the wake.
4. Conclusions

The lattice Boltzmann method has been used in the current
study to simulate single- and two-phase fluids. Benchmark studies
were conducted to validate the code. Shan–Chen’s interaction
model has been used to simulate gravity driven two-phase flows.
Bubble dynamics has been studied with single dispersed vapor
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bubble in a heavier liquid, and the results show that the bubble
shapes fall into the shape-chart created by Bhaga and Weber [2].
Simulation of bubbles with different sizes shows that as the Eotvos
number increases, the bubbles deform from a spherical to oblate
ellipsoid to disk-like and eventually at very high Eotvos numbers
to skirt-like structures. Bubble drag calculations have also been
done and the results have been found to compare well with exist-
ing empirical correlation of [2] and potential flow solution of [32].
Simulations done using LBM indicate the presence of the well-
known phenomenon of hindered rise for spherical bubbles and
cooperative rise for highly deformed bubbles.

Multiple bubbles are also simulated in large periodic domains
and bubble coalescence characteristics are studied for different ini-
tial size and distances of the bubbles. Bubble coalescence was
found to occur in a three stage process, namely collision, draining
of the liquid film and eventually its rupture. It is observed that as
the Eotvos number increases, the uppermost bubble deforms the
most because of the maximum drag that it experiences from the li-
quid flowing downstream. The bubble dynamics is dictated by vor-
tex pattern of the leading bubble, which allows the bubbles to
coalesce. Such simulations have also been run for different config-
urations of the initial bubble distribution to show the effect of vor-
tex shedding on the oscillatory motion of the bubbles. Staggered
bubbles yield a qualitative overview of the process of bubble coa-
lescence in channels in which lift forces come into play because of
the presence of walls. Future work is directed towards the study of
bubble nucleation and coalescence to form vapor slugs due to wall
heating.
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